Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
2.
Int J Mol Sci ; 24(6)2023 Mar 16.
Article in English | MEDLINE | ID: covidwho-2261590

ABSTRACT

Coronavirus disease COVID-19, which is caused by severe acute respiratory syndrome coronavirus SARS-CoV-2, has become a worldwide pandemic in recent years. In addition to being a respiratory disease, COVID-19 is a 'vascular disease' since it causes a leaky vascular barrier and increases blood clotting by elevating von Willebrand factor (vWF) levels in the blood. In this study, we analyzed in vitro how the SARS-CoV-2 spike protein S1 induces endothelial cell (EC) permeability and its vWF secretion, and the underlying molecular mechanism for it. We showed that the SARS-CoV-2 spike protein S1 receptor-binding domain (RBD) is sufficient to induce endothelial permeability and vWF-secretion through the angiotensin-converting enzyme (ACE)2 in an ADP-ribosylation factor (ARF)6 activation-dependent manner. However, the mutants, including those in South African and South Californian variants of SARS-CoV-2, in the spike protein did not affect its induced EC permeability and vWF secretion. In addition, we have identified a signaling cascade downstream of ACE2 for the SARS-CoV-2 spike protein-induced EC permeability and its vWF secretion by using pharmacological inhibitors. The knowledge gained from this study could be useful in developing novel drugs or repurposing existing drugs for treating infections of SARS-CoV-2, particularly those strains that respond poorly to the existing vaccines.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , von Willebrand Factor/genetics , von Willebrand Factor/metabolism , Peptidyl-Dipeptidase A/metabolism , Protein Binding , Endothelial Cells/metabolism
3.
Rev Med Virol ; 33(4): e2442, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2272576

ABSTRACT

Numerous studies have linked coronavirus disease 2019 (COVID-19) with endothelial dysfunction and reported elevated levels of endothelial biomarkers in this disease. We conducted a systematic review and meta-analysis of the published evidence in this respect. A systematic literature search of PubMed and Scopus databases was performed to find studies investigating biomarkers of endothelial dysfunction in COVID-19 patients. Pooled standardized mean differences and their 95% confidence intervals were calculated for each biomarker using random effect model. 74 studies with 7668 patients were included. In comparison to patients with good outcome, those with poor outcome had higher levels of von Willebrand factor (vWF) (SMD: 0.83, 95% CI: 0.59-1.07, p < 0.00001), vWF:ADAMTS13 (1.23, (0.77-1.7), p < 0.00001), angiopoietin-2 (Ang-2) (1.06 (0.6-1.51), p < 0.0001), E-selectin (1.09 (0.55-1.63), p < 0.0001), P-selectin (0.59 (0.24-0.94), p = 0.001), syndecan-1 (0.99 (0.6-1.37), p < 0.00001), mid-regional pro-adrenomedullin (MR-proADM) (1.52 (1.35-1.68), p < 0.00001), vascular endothelial growth factor (0.27 (0.02-0.53), p = 0.03), soluble fms-like tyrosine kinase-1 (sFLT-1) (1.93 (0.65-3.21), p = 0.03) and lower levels of ADAMTS13 antigen (-0.69 (-0.9 to -0.47) p < 0.00001) and activity (-0.84 (-1.06 to -0.61) p < 0.0000). Plasminogen activator inhibitor-1 and tissue plasminogen activator levels were not different between the two groups (p < 0.05). There were elevated levels of endothelial dysfunction biomarkers in COVID-19 patients with poor outcome, indicating their possible role in disease severity and prognosis. In particular, MR-proADM, vWF, syndecan-1 and sFLT-1 showed a significant association with poor outcome in these patients.


Subject(s)
COVID-19 , Tissue Plasminogen Activator , Humans , Syndecan-1 , COVID-19/diagnosis , Vascular Endothelial Growth Factor A , von Willebrand Factor/analysis , von Willebrand Factor/metabolism , Biomarkers
4.
Arterioscler Thromb Vasc Biol ; 42(9): 1103-1112, 2022 09.
Article in English | MEDLINE | ID: covidwho-2285811

ABSTRACT

The activating interplay of thrombosis and inflammation (thromboinflammation) has been established as a major underlying pathway, driving not only cardiovascular disease but also autoimmune disease and most recently, COVID-19. Throughout the years, innate immune cells have emerged as important modulators of this process. As the most abundant white blood cell in humans, neutrophils are well-positioned to propel thromboinflammation. This includes their ability to trigger an organized cell death pathway with the release of decondensed chromatin structures called neutrophil extracellular traps. Decorated with histones and cytoplasmic and granular proteins, neutrophil extracellular traps exert cytotoxic, immunogenic, and prothrombotic effects accelerating disease progression. Distinct steps leading to extracellular DNA release (NETosis) require the activities of PAD4 (protein arginine deiminase 4) catalyzing citrullination of histones and are supported by neutrophil inflammasome. By linking the immunologic function of neutrophils with the procoagulant and proinflammatory activities of monocytes and platelets, PAD4 activity holds important implications for understanding the processes that fuel thromboinflammation. We will also discuss mechanisms whereby vascular occlusion in thromboinflammation depends on the interaction of neutrophil extracellular traps with ultra-large VWF (von Willebrand Factor) and speculate on the importance of PAD4 in neutrophil inflammasome assembly and neutrophil extracellular traps in thromboinflammatory diseases including atherosclerosis and COVID-19.


Subject(s)
Atherosclerosis , COVID-19 , Extracellular Traps , Thrombosis , Atherosclerosis/metabolism , Extracellular Traps/metabolism , Histones/metabolism , Humans , Inflammasomes/metabolism , Inflammation/metabolism , Neutrophils/metabolism , Thromboinflammation , Thrombosis/etiology , Thrombosis/metabolism , von Willebrand Factor/metabolism
5.
Ann Hematol ; 101(12): 2627-2631, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2261233

ABSTRACT

Acquired von Willebrand syndrome (AVWS) is a rare hematologic disorder characterized by quantitative or qualitative defects of von Willebrand factor (vWF), a protein crucial for normal hemostasis. AVWS has been described in association with several pathologic entities with varied mechanisms. Among these, lymphoproliferative disorders are the most common, with monoclonal gammopathy of undetermined significance (MGUS) being the most frequently reported. AVWS in this setting is commonly associated with the development of bleeding that is clinically challenging to manage due to accelerated clearance of vWF, limiting the utility of many conventional treatment modalities such as DDAVP or vWF/FVIII. We report a case of a 43-year-old male who was sent to our institution for new-onset easy bruising and laboratories concerning for von Willebrand disease (vWD). Further diagnostic workup revealed evidence of an IgG monoclonal gammopathy and findings suggestive of vWF inhibition. Ultimately, he was found to have monoclonal gammopathy of clinical significance (MGCS)-associated AVWS refractory to conventional treatment but responsive to lenalidomide and dexamethasone. This case suggests that lenalidomide may be suitable for patients with AVWS secondary to MGCS.


Subject(s)
Monoclonal Gammopathy of Undetermined Significance , Paraproteinemias , von Willebrand Diseases , Male , Humans , Adult , von Willebrand Diseases/complications , von Willebrand Diseases/drug therapy , Monoclonal Gammopathy of Undetermined Significance/complications , Monoclonal Gammopathy of Undetermined Significance/drug therapy , von Willebrand Factor/metabolism , Lenalidomide/therapeutic use , Paraproteinemias/complications , Paraproteinemias/drug therapy , Paraproteinemias/diagnosis
6.
Thromb Res ; 223: 80-86, 2023 03.
Article in English | MEDLINE | ID: covidwho-2211523

ABSTRACT

INTRODUCTION: COVID-19 is associated with an increased thromboembolic risk. However, the mechanisms triggering clot formation in those patients remain unknown. PATIENTS AND METHODS: In 118 adult Caucasian severe but non-critically ill COVID-19 patients (median age 58 years; 73 % men) and 46 controls, we analyzed in vitro plasma thrombin generation profile (calibrated automated thrombogram [CAT assay]) and investigated thrombophilia-related factors, such as protein C and antithrombin activity, free protein S level, presence of antiphospholipid antibodies and factor V Leiden R506Q and prothrombin G20210A mutations. We also measured circulating von Willebrand factor (vWF) antigen and a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13) antigen and activity. In patients, blood samples were collected on admission to the hospital before starting any therapy, including heparin. Finally, we examined the relationship between observed alterations and disease follow-up, such as thromboembolic complications. RESULTS: COVID-19 patients showed 17 % lower protein C activity, 22 % decreased free protein S levels, and a higher prevalence of positive results for IgM anticardiolipin antibodies. They also had 151 % increased vWF, and 27 % decreased ADAMTS13 antigens compared with controls (p < 0.001, all). On the contrary, thrombin generation potential was similar to controls. In the follow-up, pulmonary embolism (PE) occurred in thirteen (11 %) patients. They were characterized by a 55 % elevated D-dimer (p = 0.04) and 2.7-fold higher troponin I (p = 0.002) during hospitalization and 29 % shorter time to thrombin peak in CAT assay (p = 0.009) compared to patients without PE. CONCLUSIONS: In COVID-19, we documented prothrombotic abnormalities of peripheral blood. PE was characterized by more dynamic thrombin generation growth in CAT assay performed on admittance to the hospital.


Subject(s)
COVID-19 , von Willebrand Factor , Humans , ADAMTS13 Protein , Protein C , Thrombin , von Willebrand Factor/metabolism , Protein S/metabolism
7.
J Thromb Haemost ; 21(1): 94-100, 2023 01.
Article in English | MEDLINE | ID: covidwho-2210985

ABSTRACT

BACKGROUND: Post-COVID syndrome (PCS) affects millions of people worldwide, causing a multitude of symptoms and impairing quality of life months or even years after acute COVID-19. A prothrombotic state has been suggested; however, underlying mechanisms remain to be elucidated. OBJECTIVES: To investigate thrombogenicity in PCS using a microfluidic assay, linking microthrombi, thrombin generation, and the von Willebrand factor (VWF):a Disintegrin and Metalloproteinase with a Thrombospondin Type 1 motif, member 13 (ADAMTS13) axis. METHODS: Citrated blood was perfused through microfluidic channels coated with collagen or an antibody against the VWF A3 domain, and thrombogenicity was monitored in real time. Thrombin generation assays were performed and α(2)-antiplasmin, VWF, and ADAMTS13 activity levels were also measured. RESULTS: We investigated thrombogenicity in a cohort of 21 patients with PCS with a median time following symptoms onset of 23 months using a dynamic microfluidic assay. Our data show a significant increase in platelet binding on both collagen and anti-VWF A3 in patients with PCS compared with that in controls, which positively correlated with VWF antigen (Ag) levels, the VWF(Ag):ADAMTS13 ratio (on anti-VWF A3), and inversely correlated with ADAMTS13 activity (on collagen). Thrombi forming on collagen presented different geometries in patients with PCS vs controls, with significantly increased thrombi area mainly attributable to thrombi length in the patient group. Thrombi length positively correlated with VWF(Ag):ADAMTS13 ratio and thrombin generation assay results, which were increased in 55.5% of patients. α(2)-Antiplasmin levels were normal in 89.5% of patients. CONCLUSION: Together, these data present a dynamic assay to investigate the prothrombotic state in PCS, which may help unravel the mechanisms involved and/or establish new therapeutic strategies for this condition.


Subject(s)
Antifibrinolytic Agents , COVID-19 , Thrombosis , Humans , Thrombin , Quality of Life , ADAM Proteins/metabolism , COVID-19/complications , von Willebrand Factor/metabolism , Thrombosis/etiology , Collagen , ADAMTS13 Protein
8.
Cells ; 12(1)2023 01 03.
Article in English | MEDLINE | ID: covidwho-2166271

ABSTRACT

Critically ill COVID-19 patients suffer from thromboembolic as well as bleeding events. Endothelial dysfunction, spiking of von Willebrand factor (vWF), and excessive cytokine signaling result in coagulopathy associated with substantial activation of plasmatic clotting factors. Thrombocytopenia secondary to extensive platelet activation is a frequent finding, but abnormal platelet dysfunction may also exist in patients with normal platelet counts. In this study, we performed analyses of platelet function and of von Willebrand factor in critically ill COVID-19 patients (n = 13). Platelet aggregometry was performed using ADP, collagen, epinephrin, and ristocetin. VWF and fibrinogen binding of platelets and CD62 and CD63 expression after thrombin stimulation were analyzed via flow cytometry. In addition, VWF antigen (VWF:Ag), collagen binding capacity (VWF:CB), and multimer analysis were performed next to routine coagulation parameters. All patients exhibited reduced platelet aggregation and decreased CD62 and CD63 expression. VWF binding of platelets was reduced in 12/13 patients. VWF:CB/VWF:Ag ratios were pathologically decreased in 2/13 patients and elevated in 2/13 patients. Critically ill COVID-19 patients exhibit platelet secretion defects independent of thrombocytopenia. Platelet exhaustion and VWF dysfunction may result in impaired primary hemostasis and should be considered when treating coagulopathy in these patients.


Subject(s)
COVID-19 , Thrombocytopenia , Humans , von Willebrand Factor/metabolism , SARS-CoV-2/metabolism , Critical Illness , Platelet Aggregation , COVID-19/complications , Hemostasis , Thrombocytopenia/complications , Collagen/metabolism
9.
J Med Case Rep ; 16(1): 326, 2022 Aug 23.
Article in English | MEDLINE | ID: covidwho-2002224

ABSTRACT

BACKGROUND: We speculated that subclinical thrombosis may occur frequently through crosstalk between immune/inflammatory reactions and hemostasis after corona virus disease-2019 (COVID-19) vaccination. To test this hypothesis, we measured thrombosis-related parameters after COVID-19 vaccination in a volunteer for 21 days. CASE PRESENTATION: The following parameters were measured in a 72-year-old Korean man at 1 day before vaccination and on days 1, 3, 7, 14, and 21 post vaccination (AstraZeneca COVID-19 vaccine: ChAdOx1-S/nCoV-19, CTMAV563): complete blood count, platelet indices, thrombin receptor-activating peptide-induced platelet aggregation, prothrombin time, activated partial thromboplastin time, D-dimer, thrombin-antithrombin III complex (TAT), plasmin-α2 antiplasmin complex (PAP), von Willebrand factor (vWF) antigen and activity, plasminogen activator inhibitor-1 (PAI-1), protein C and protein S antigen and activity, lupus anticoagulant, fibrinogen degradation product, and plasminogen. We found that the TAT had significantly increased from 0.7 ng/mL (baseline) to 21.7 ng/mL (day 1). There was a transient increase in the PAI-1 level from 7.2 ng/mL (baseline) to 10.9 ng/mL (day 3), followed by a decrease in PAP level from 0.9 ng/mL (baseline) to 0.3 µg/mL (day 7), suggesting that plasmin generation is suppressed by PAI-1. CONCLUSIONS: Increased thrombotic factors (such as decreased protein S) and decreased fibrinolytic activity due to increased PAI-1 were potential factors causing thrombogenesis after COVID-19 vaccination. Sequential measurement of platelet indices, TAT, PAP, protein C, protein S, vWF, D-dimer, and PAI-1 following COVID-19 vaccination was informative.


Subject(s)
COVID-19 Vaccines , COVID-19 , Thrombosis , 2019-nCoV Vaccine mRNA-1273 , Aged , COVID-19 Vaccines/adverse effects , ChAdOx1 nCoV-19 , Fibrinolysin/metabolism , Humans , Male , Plasminogen Activator Inhibitor 1 , Protein C/metabolism , Protein S , Thrombosis/etiology , Vaccination , Volunteers , von Willebrand Factor/metabolism
10.
Int J Mol Sci ; 23(15)2022 Jul 27.
Article in English | MEDLINE | ID: covidwho-1994078

ABSTRACT

The vascular endothelium has several important functions, including hemostasis. The homeostasis of hemostasis is based on a fine balance between procoagulant and anticoagulant proteins and between fibrinolytic and antifibrinolytic ones. Coagulopathies are characterized by a mutation-induced alteration of the function of certain coagulation factors or by a disturbed balance between the mechanisms responsible for regulating coagulation. Homeostatic therapies consist in replacement and nonreplacement treatments or in the administration of antifibrinolytic agents. Rebalancing products reestablish hemostasis by inhibiting natural anticoagulant pathways. These agents include monoclonal antibodies, such as concizumab and marstacimab, which target the tissue factor pathway inhibitor; interfering RNA therapies, such as fitusiran, which targets antithrombin III; and protease inhibitors, such as serpinPC, which targets active protein C. In cases of thrombophilia (deficiency of protein C, protein S, or factor V Leiden), treatment may consist in direct oral anticoagulants, replacement therapy (plasma or recombinant ADAMTS13) in cases of a congenital deficiency of ADAMTS13, or immunomodulators (prednisone) if the thrombophilia is autoimmune. Monoclonal-antibody-based anti-vWF immunotherapy (caplacizumab) is used in the context of severe thrombophilia, regardless of the cause of the disorder. In cases of disseminated intravascular coagulation, the treatment of choice consists in administration of antifibrinolytics, all-trans-retinoic acid, and recombinant soluble human thrombomodulin.


Subject(s)
Factor V/metabolism , Thrombophilia , von Willebrand Factor , Anticoagulants , Endothelium, Vascular/metabolism , Factor VIII/genetics , Factor VIII/therapeutic use , Homeostasis , Humans , Protein C/therapeutic use , Thrombophilia/genetics , von Willebrand Factor/metabolism
11.
J Thromb Thrombolysis ; 54(2): 211-216, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1959071

ABSTRACT

The COVID-19 pandemic is often accompanied by severe respiratory illness and thrombotic complications. Von Willebrand Factor (VWF) levels are highly elevated in this condition. However, limited data are available on the qualitative activity of VWF in COVID-19. We measured plasma VWF levels quantitatively (VWF antigen) and qualitatively (ristocetin-induced platelet agglutination, glycoprotein IbM (GPIbM) binding, and collagen binding). Consistent with prior reports, VWF antigen levels were significantly elevated in hospitalized patients with or without COVID-19. The GPIbM and collagen binding activity-to-antigen ratios were significantly reduced, consistent with qualitative changes in VWF in COVID-19. Of note, critically ill hospitalized patients without COVID-19 had similar reductions in VWF activity-to-antigen ratios as patients with COVID-19. Our data suggest that qualitative changes in VWF in COVID-19 may not be specific to COVID-19. Future studies are warranted to determine the mechanisms responsible for qualitative changes in VWF in COVID-19 and other critical illnesses.• VWF levels were increased in COVID-19 compared to healthy controls.• VWF activity-to-antigen ratios were decreased in COVID-19 compared to healthy controls.• There were no differences in VWF activity-to-antigen ratios between hospitalized patients with or without COVID-19.• These findings are consistent with qualitative changes in VWF in systemic inflammation which are not specific to COVID-19.• Future studies are needed to define possible roles of changes in conformation or multimer length in the qualitative changes in VWF in systemic inflammation.


Subject(s)
COVID-19 , von Willebrand Diseases , Collagen , Humans , Inflammation , Pandemics , Platelet Glycoprotein GPIb-IX Complex/metabolism , von Willebrand Factor/metabolism
12.
Front Immunol ; 13: 859387, 2022.
Article in English | MEDLINE | ID: covidwho-1924095

ABSTRACT

Recent genome-wide association studies (GWASs) of COVID-19 patients of European ancestry have identified genetic loci significantly associated with disease severity. Here, we employed the detailed clinical, immunological and multi-omics dataset of the Human Functional Genomics Project (HFGP) to explore the physiological significance of the host genetic variants that influence susceptibility to severe COVID-19. A genomics investigation intersected with functional characterization of individuals with high genetic risk for severe COVID-19 susceptibility identified several major patterns: i. a large impact of genetically determined innate immune responses in COVID-19, with ii. increased susceptibility for severe disease in individuals with defective cytokine production; iii. genetic susceptibility related to ABO blood groups is probably mediated through the von Willebrand factor (VWF) and endothelial dysfunction. We further validated these identified associations at transcript and protein levels by using independent disease cohorts. These insights allow a physiological understanding of genetic susceptibility to severe COVID-19, and indicate pathways that could be targeted for prevention and therapy.


Subject(s)
COVID-19 , Genome-Wide Association Study , COVID-19/genetics , Genetic Predisposition to Disease , Humans , Immunity , von Willebrand Factor/genetics , von Willebrand Factor/metabolism
13.
PLoS One ; 17(5): e0268296, 2022.
Article in English | MEDLINE | ID: covidwho-1910641

ABSTRACT

Severe coronavirus disease-19 (COVID-19) is characterized by vascular inflammation and thrombosis. We and others have proposed that the inflammatory response to coronavirus infection activates endothelial cells, leading to endothelial release of pro-thrombotic proteins. These mediators can trigger obstruction of the pulmonary microvasculature, leading to worsening oxygenation, acute respiratory distress syndrome, and death. In the current study, we tested the hypothesis that higher levels of biomarkers released from endothelial cells are associated with worse oxygenation in patients with COVID-19. We studied 83 participants aged 18-84 years with COVID-19 admitted to a single center. The severity of pulmonary disease was classified by oxygen requirement, including no oxygen requirement, low-flow oxygen, high-flow nasal cannula oxygen, mechanical ventilation, and death. We measured plasma levels of two proteins released by activated endothelial cells, von Willebrand Factor (VWF) antigen and soluble P-Selectin (sP-Sel), and a biomarker of systemic thrombosis, D-dimer. Additionally, we explored the association of endothelial biomarker levels with the levels of pro-inflammatory cytokine and chemokines, and vascular inflammation biomarkers. We found that levels of VWF, sP-sel, and D-dimer were increased in individuals with more severe COVID-19 pulmonary disease. Biomarkers of endothelial cell activation were also correlated with proinflammatory cytokines and chemokines. Taken together, our data demonstrate increased levels of VWF and sP-selectin are linked to the severity of lung disease in COVID-19 and correlated with biomarkers of inflammation and vascular inflammation. Our data support the concept that COVID-19 is a vascular disease which involves endothelial injury in the context of an inflammatory state.


Subject(s)
COVID-19 , Thrombosis , Biomarkers , Chemokines/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Humans , Inflammation/metabolism , Oxygen/metabolism , Thrombosis/metabolism , von Willebrand Factor/metabolism
14.
Phys Chem Chem Phys ; 24(24): 14857-14865, 2022 Jun 22.
Article in English | MEDLINE | ID: covidwho-1890292

ABSTRACT

von Willebrand factor (VWF) senses and responds to the hemodynamic forces to interact with the circulatory system and platelets in hemostasis and thrombosis. The dark side of this mechanobiology is implicated in atherothrombosis, stroke, and, more recently, the COVID-19 thrombotic symptoms. The force-responsive element controlling VWF activation predominantly resides in the N terminal auto-inhibitory module (N-AIM) flanking its A1 domain. Nevertheless, the detailed mechano-chemistry of soluble VWF N-AIM is poorly understood at the sub-molecular level as it is assumed to be unstructured loops. Using the free molecular dynamics (MD) simulations, we first predicted a hairpin-like structure of the soluble A1 N-AIM derived polypeptide (Lp; sequences Q1238-E1260). Then we combined molecular docking and steered molecular dynamics (SMD) simulations to examine how Lp regulates the A1-GPIbα interaction under tensile forces. Our simulation results indicate that Lp suppresses the catch bond in a sandwich complex of A1-Lp-GPIbα yet contributes an additional catch-bond residue D1249. To experimentally benchmark the binding kinetics for A1-GPIbα in the absence or presence of Lp, we conducted the force spectroscopy-biomembrane force probe (BFP) assays. We found similar suppression on the A1-GPIbα catch bond with soluble Lp in presence. Clinically, as more and more therapeutic candidates targeting the A1-GPIbα axis have entered clinical trials to treat patients with TTP and acute coronary syndrome, our work represents an endeavor further towards an effective anti-thrombotic approach without severe bleeding side effects as most existing drugs suffer.


Subject(s)
COVID-19 , Platelet Glycoprotein GPIb-IX Complex/metabolism , von Willebrand Factor , Blood Platelets , Humans , Molecular Docking Simulation , Protein Binding , von Willebrand Factor/chemistry , von Willebrand Factor/metabolism
15.
Viruses ; 14(6)2022 05 29.
Article in English | MEDLINE | ID: covidwho-1869825

ABSTRACT

Thrombosis of small and large vessels is reported as a key player in COVID-19 severity. However, host genetic determinants of this susceptibility are still unclear. Congenital Thrombotic Thrombocytopenic Purpura is a severe autosomal recessive disorder characterized by uncleaved ultra-large vWF and thrombotic microangiopathy, frequently triggered by infections. Carriers are reported to be asymptomatic. Exome analysis of about 3000 SARS-CoV-2 infected subjects of different severities, belonging to the GEN-COVID cohort, revealed the specific role of vWF cleaving enzyme ADAMTS13 (A disintegrin-like and metalloprotease with thrombospondin type 1 motif, 13). We report here that ultra-rare variants in a heterozygous state lead to a rare form of COVID-19 characterized by hyper-inflammation signs, which segregates in families as an autosomal dominant disorder conditioned by SARS-CoV-2 infection, sex, and age. This has clinical relevance due to the availability of drugs such as Caplacizumab, which inhibits vWF-platelet interaction, and Crizanlizumab, which, by inhibiting P-selectin binding to its ligands, prevents leukocyte recruitment and platelet aggregation at the site of vascular damage.


Subject(s)
COVID-19 , Purpura, Thrombotic Thrombocytopenic , ADAM Proteins/genetics , ADAM Proteins/metabolism , ADAMTS13 Protein/genetics , COVID-19/genetics , Humans , Purpura, Thrombotic Thrombocytopenic/diagnosis , Purpura, Thrombotic Thrombocytopenic/genetics , SARS-CoV-2/pathogenicity , von Willebrand Factor/chemistry , von Willebrand Factor/genetics , von Willebrand Factor/metabolism
16.
Haemophilia ; 28 Suppl 4: 11-17, 2022 May.
Article in English | MEDLINE | ID: covidwho-1832065

ABSTRACT

Progress in both basic and translational research into the molecular mechanisms of VWD can be seen in multiple fields. GENETICS OF VWD: In the past several decades, knowledge of the underlying pathogenesis of von Willebrand disease (VWD) has increased tremendously, thanks in no small part to detailed genetic mapping of the von Willebrand Factor (VWF) gene and advances in genetic and bioinformatic technology. However, these advances do not always easily translate into improved management for patients with VWD and low-VWF levels. VWD AND PREGNANCY: For example, the treatment of pregnant women with VWD both pre- and postpartum can be complicated. While knowledge of the VWF genotype at some amino acid positions can aid in knowledge of who may be at increased risk of thrombocytopenia or insufficient increase in VWF levels during pregnancy, in many cases, VWF levels and bleeding severity is highly heterogeneous, making monitoring recommended during pregnancy to optimize treatment strategies. VWF AND COVID-19: New challenges related to the consequences of dysregulation of hemostasis continue to be discovered. The ongoing COVID-19 pandemic has highlighted that VWF has additional biological roles in the regulation of inflammatory disorders and angiogenesis, disruption of which may contribute to COVID-19 induced vasculopathy. Increased endothelial cell activation and Weibel-Palade body exocytosis in severe COVID-19 lead to markedly increased plasma VWF levels. Coupled with impairment of normal ADAMTS13 multimer regulation, these data suggest a role for VWF in the pathogenesis underlying pulmonary microvascular angiopathy in severe COVID-19. CONCLUSION: With the increased affordability and availability of next-generation sequencing techniques, as well as a push towards a multi-omic approach and personalized medicine in human genetics, there is hope that translational research will improve VWD patient outcomes.


Subject(s)
COVID-19 , von Willebrand Diseases , Female , Genotype , Humans , Pandemics , Pregnancy , von Willebrand Diseases/complications , von Willebrand Diseases/genetics , von Willebrand Factor/metabolism
17.
Int J Hematol ; 115(4): 457-469, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1750844

ABSTRACT

ADAMTS13, a metalloproteinase, specifically cleaves unusually large multimers of von Willebrand factor (VWF), newly released from vascular endothelial cells. The ratio of ADAMTS13 activity to VWF antigen (ADAMTS13/VWF) and indicators of the alternative complement pathway (C3a and sC5b-9) are both related to the severity of COVID-19. The ADAMTS13/VWF ratio is generally moderately decreased (0.18-0.35) in patients with severe COVID-19. When these patients experience cytokine storms, both interleukin-8 and TNFα stimulate VWF release from vascular endothelial cells, while interleukin-6 inhibits both production of ADAMTS13 and its interaction with VWF, resulting in localized severe deficiency of ADAMTS13 activity. Platelet factor 4 and thrombospondin-1, both released upon platelet activation, bind to the VWF-A2 domain and enhance the blockade of ADAMTS13 function. Thus, the released unusually-large VWF multimers remain associated with the vascular endothelial cell surface, via anchoring with syndecan-1 in the glycocalyx. Unfolding of the VWF-A2 domain, which has high sequence homology with complement factor B, allows the domain to bind to activated complement C3b, providing a platform for complement activation of the alternative pathway. The resultant C3a and C5a generate tissue factor-rich neutrophil extracellular traps (NETs), which induce the mixed immunothrombosis, fibrin clots and platelet aggregates typically seen in patients with severe COVID-19.


Subject(s)
ADAMTS13 Protein , COVID-19 , Cytokine Release Syndrome , von Willebrand Factor , ADAMTS13 Protein/metabolism , COVID-19/immunology , Complement Pathway, Alternative , Endothelial Cells/metabolism , Humans , von Willebrand Factor/metabolism
18.
Crit Care Med ; 50(8): 1246-1255, 2022 08 01.
Article in English | MEDLINE | ID: covidwho-1722614

ABSTRACT

OBJECTIVES: Although COVID-19 is associated with high von Willebrand factor (vWF) parameters promoting thrombosis, venovenous extracorporeal membrane oxygenation (vvECMO) is associated with the development of acquired von Willebrand syndrome (AVWS) promoting bleeding. This study was designed to assess both the incidence and severity of AVWS in COVID-19 patients undergoing vvECMO, and the benefit of comprehensive vWF analyses. DESIGN: Prospective observational study. SETTING: ICU at a tertiary-care center. PATIENTS: Twenty-seven consecutive COVID-19 patients with acute respiratory distress syndrome (ARDS) requiring vvECMO. MEASUREMENTS AND MAIN RESULTS: Comprehensive vWF analyses (including sodium dodecyl-sulfate polyacrylamide gel electrophoresis) were performed before, during, and after vvECMO. In a subgroup of 12 patients with AVWS, effectiveness of treatment with desmopressin was assessed. The patients' mean age was 53 years (range, 23-73), 70% were male, and all had various comorbidities. Following markedly elevated vwf antigen (vWF: Ag; mean, 546% ( sd , 282]), vWF collagen binding capacity (mean, 469% [ sd , 271]), vWF activity (vWF:A; mean, 383% [ sd , 132]), and factor VIII activity (mean, 302% [ sd , 106]), and only borderline decreases in high-molecular-weight (HMW) vWF multimers before vvECMO, all of these variables decreased and HMW vWF multimers became undetectable within hours following initiation of vvECMO. All variables fully recovered within 3-38 hours after discontinuation of vvECMO. During vvECMO, decreases in the vWF:A/vWF:Ag ratio correlated with absent HMW vWF multimers. Desmopressin did not affect vWF parameters. CONCLUSIONS: In patients with COVID-19-associated ARDS, AVWS developed soon after initiation of vvECMO. The vWF:A/vWF:Ag ratio was a suitable screening test for AVWS. As desmopressin was ineffective, bleeding during vvECMO-associated AVWS should preferably be treated with concentrates containing vWF.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , von Willebrand Diseases , Adult , Aged , COVID-19/complications , Deamino Arginine Vasopressin/therapeutic use , Extracorporeal Membrane Oxygenation/adverse effects , Female , Hemorrhage/complications , Humans , Male , Middle Aged , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy , Young Adult , von Willebrand Diseases/complications , von Willebrand Diseases/diagnosis , von Willebrand Diseases/drug therapy , von Willebrand Factor/metabolism
19.
BMC Pregnancy Childbirth ; 22(1): 142, 2022 Feb 21.
Article in English | MEDLINE | ID: covidwho-1706234

ABSTRACT

BACKGROUND: Thrombotic microangiopathy has been invoked as one of the most important mechanisms of damage in COVID-19 patients. Protease ADAMTS13 is a marker of microangiopathy responsible for controlling von Willebrand multimers size. Von Willebrand factor/ADAMTS13 ratio has been found impaired in COVID-19 patients outside pregnancy. METHODS: We prospectively investigated 90 pregnant women admitted to two tertiary academic hospitals in Italy with a laboratory-confirmed diagnosis of SARS-CoV-2 infection. Demographic, clinical information and routine laboratory data were collected at the hospital admission and until discharge. We investigated whether vonWillebrand /ADAMTS13 axis imbalance is a predictor of adverse outcomes. Logistic regression analysis, which controlled for potential confounders, was performed to evaluate the association between laboratory parameters and clinical outcomes. RESULTS: Most women (55.6%) were parae, with median gestational age at admission of 39 weeks. At hospital admission, 63.3% were asymptomatic for COVID-19 and 24.4% showed more than one sign or symptom of infection. Nulliparae with group O showed Willebrand / ADA MTS-13 ratios significantly lower than non-O, whereas in multiparae this difference was not observed. Logistic regression showed that ratio von Willebrand to ADAMTS13 was significantly and independently associated with preterm delivery (OR 1.9, 95%CI 1.1-3.5). CONCLUSION: This study shows an imbalance of vonWillebrand /ADAMTS13 axis in pregnant women with COVID-19, leading to a significantly higher and independent risk of preterm delivery. Monitoring these biomarkers might support decision making process to manage and follow-up pregnancies in this setting.


Subject(s)
ADAMTS13 Protein/blood , COVID-19/blood , Pregnancy Complications/blood , Premature Birth/blood , von Willebrand Factor/metabolism , Academic Medical Centers , Adolescent , Adult , Biomarkers/blood , COVID-19/complications , Female , Humans , Italy/epidemiology , Middle Aged , Pregnancy , SARS-CoV-2 , Tertiary Care Centers , Thrombotic Microangiopathies/etiology , Young Adult
20.
Thromb Haemost ; 122(2): 240-256, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1642057

ABSTRACT

BACKGROUND: Endothelial and complement activation were both associated with immunothrombosis, a key determinant of COVID-19 severity, but their interrelation has not yet been investigated. OBJECTIVES: We aimed to determine von Willebrand factor (VWF) antigen (VWF:Ag) concentration, VWF collagen binding activity (VWF:CBA), a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13) activity (ADAMTS13:Ac), and their ratios in hospitalized COVID-19 patients, and to investigate how these parameters and their constellation with complement activation relate to disease severity and in-hospital mortality in COVID-19. METHODS: Samples of 102 hospitalized patients with polymerase chain reaction-confirmed severe acute respiratory syndrome coronavirus 2 positivity were included in our observational cohort study. Patients were stratified according to the peak severity of COVID-19 disease in agreement with the World Health Organization ordinal scale. Twenty-six convalescent plasma donors with previous COVID-19 disease formed the control group. VWF:Ag concentration and VWF:CBA were determined by enzyme-linked immunosorbent assay (ELISA); ADAMTS13:Ac was determined by fluorescence resonance energy transfer. Complement C3 and C3a were measured by turbidimetry and ELISA, respectively. Clinical covariates and markers of inflammation were extracted from hospital records. RESULTS: VWF:Ag and VWF:CBA were elevated in all groups of hospitalized COVID-19 patients and increased in parallel with disease severity. ADAMTS13:Ac was decreased in patients with severe COVID-19, with the lowest values in nonsurvivors. High (> 300%) VWF:Ag concentrations or decreased (< 67%) ADAMTS13:Ac were associated with higher risk of severe COVID-19 disease or in-hospital mortality. The concomitant presence of decreased ADAMTS13:Ac and increased C3a/C3 ratio-indicating complement overactivation and consumption-was a strong independent predictor of in-hospital mortality. CONCLUSION: Our results suggest that an interaction between the VWF-ADAMTS13 axis and complement overactivation and consumption plays an important role in the pathogenesis of COVID-19.


Subject(s)
ADAMTS13 Protein/metabolism , COVID-19/immunology , Complement C3/metabolism , SARS-CoV-2/physiology , von Willebrand Factor/metabolism , Adult , Aged , COVID-19/epidemiology , COVID-19/mortality , Complement Activation , Convalescence , Female , Hospitalization , Humans , Hungary/epidemiology , Male , Middle Aged , Nephelometry and Turbidimetry , Severity of Illness Index , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL